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Abstract: 
The parameters and sometimes even the structure of the real complex systems are not exactly known in 
advance, and which moreover often change in unpredictable way. Adequacy of models of such complex 
systems must be then ensured by identification of their structure and parameters. One of  suitable 
method of modelling of such ill-known and difficult measure systems appears a fuzzy non-linear 
regression analysis represets by Takagi-Sugeno fuzzy model. In the paper an extended TS model is 
presented with the regression coefficients in the shape of fuzzy numbers. The difference between the 
actual and computed values of the dependent variable in the new fuzzy regression models - with the 
fuzzy regression coefficients - are due to the “indefiniteness“ of the system structure and parameters 
and - in the end - the level of system fuzziness is expressed through to fuzziness of model output 
variable.  
 
Abstrakt: 
Parametry a někdy i struktury reálných komplexních systémů nejsou přesně známy a navíc se často 
mění nepředvídatelným způsobem. Adekvátnost modelů komplexních systémů je nutno zajistit 
odpovídající identifikaci jejich struktury a parametrů. Jednou z vhodných metod modelování těchto 
špatně definovaných a obtížné měřitelných systémů je fuzzy nelineární regresní modelování typu 
Takagi-Sugeno. V práci je prezentován rozšířený model TS model, jehož regresní koeficienty jsou 
definovány ve tvaru fuzzy čísel. Rozdíl mezi skutečnými a vypočtenými hodnotami závislé proměnné 
jsou pak dány neurčitostí struktury systému a parametrů. Úroveň neurčitosti systému je vyjádřena 
prostřednictvím neurčitosti fuzzy čísla jako hodnoty výstupní proměnné modelu. 
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1 Introduction 

Many studied processes are represented by systems, the parameters and sometimes even 
the structure of which are not exactly known in advance, and which moreover often change in 
unpredictable way. Adequacy of models of such complex systems must be then ensured by 
identification of their structure and parameters. The suitable modelling methods are usually products of 
scientific field of Artificial intelligence [1], [2]. 

One of  suitable method of modelling of complex, ill-known and difficult measure systems appears 
a fuzzy linear and fuzzy non-linear regression analysis [7]. 

The difference between the actual and computed values of the dependent variable in the fuzzy 
linear regression models - with the fuzzy regression coefficients - are due to the “indefiniteness“ of the 
system structure and parameters and - in the end - the level of system fuzziness is expressed through 
to fuzziness of model output variable.  

The non-linear regression fuzzy models type Takagi-Sugeno (TS-models) include the linear 
regression equations with the crisp regression coefficients [5], [8]. Therefore, the global output of 
classical TS-model  models is in the crisp form and, in this case, there is not possible to judge an output 
variable fuzziness. There is disadvantage in the case when the TS-model is used in tasks of system 
state prediction or fouls estimation. On the other hand, the crisp form of output variable is  advantage in 
the case when the TS-model is used in tasks of system control (Sugeno controller).   

The new fuzzy non-linear regression model which is presented in my paper reflects the level of 
system fuzziness better - through a fuzzy global output variable [12]. 

 

2 Fuzzy linear regression model (flrm) 

The fuzzy parameters of the fuzzy linear regression model (FLRM) represent the described 
system fuzziness. The fuzzy parameters of the FLRM denoted k are defined through the normal convex 
fuzzy sets (fuzzy numbers). The fuzzy linear regression model is given in the form [9] 

 

nxnkxkky ....
1

.10
*

         

 
where y* is the computed output variable in the fuzzy form, kj are the fuzzy regression 

parameters in the form of triangular fuzzy numbers [3], [5].  
In case of fuzzy linear regression model FLRM, the one regression relation validity exists in full 

scale of the input variables. It means that the model validity exists in full n- dimension input space 
defined for n- input variables. 

 

3 Fuzzy non-linear regression model (fnlrm) 

If the hypothesis exists that in the various intervals of input variables x exist the various 
regression relations  

 
y = f(x)  
 

the division of input space is necessary together with the definitions of the appropriate partial 
regression models. Thus it is possible to design the production rules set which represents the rule 
based model of system under study with higher degree of fitting than the simple fuzzy linear regression 
model. 



          EMI, Vol. 7, Issue 1, 2015 

  ISSN: 1804-1299 (Print), 1805-353X (Online) 
 

15 
http://emi.mvso.cz 

The fuzzy rules therefore define the division of fuzzy input space, and at the same time in each 
sub-spaces the appropriate input/output regression relation is defined. Thus, r-th rule is then 
constructed in the form [4], [5], [6], [7] 
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where r = 1, 2, ..., R is the number of rules. The widely known fuzzy non-linear regression model 
FNLRM which is defined in this way is named Takagi-Sugeno (T-S model) [10], [11]. The partial result 
of rules  yr* are calculated using the regression formulas and the global resulting value of whole 

FNRLM model y*  is given using expression 
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The weight value wr is given as the minimum relation 

 

 0.min
j

x
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where µAjr(xj

0) is grade of membership of sampled values xij
0 to the fuzzy set Ajr . 

 
The classical T-S model is considered using the rules in which the consequent regression 

coefficients are identified as the non-fuzzy (crisp) numbers k. Therefore, the global output of classical T-
S model  y* is in the crisp form and, in this case, there is not possible to judge the fuzziness of output 
variable. The crisp output variable in the fuzzy form  is  advantage in the case when the T-S model is 
used in tasks of system control (Sugeno controller). But, there is disadvantage in the case when the T-S 
model is used in tasks of system state prediction or foults estimation.  

 

4 Fuzzy extended non-linear regression model (ferm) 

To rich the fuzzy form of global output variable of fuzzy non-linear regression model the more 
general regression method was proposed. This method is one in which the consequent regression 
coefficients of the fuzzy rules are identified as the fuzzy numbers k and now the global output of such 
FERM is in the fuzzy number form y* as well. The r- th rule of such FERM model is then constructed in 
the form 
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The construction of model FERM involves the identification procedures of the  regression 

coefficients (consequent parameters) in triangular fuzzy numbers form.     
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5 IDENTIFICATION OF THE MODEL FERM  

5.1 Premise Structure Identification 
Identification of the premise structure consists of two tasks: determination of optimal structure of 

independent  variables and determination of optimal partition of fuzzy space of input variables as a 
proper problem of fuzzy  modelling. 

The algorithm of structure optimization is starting its identification process with one rule (linear 
model) and then is increasing the number of rules with simultaneous observation of the trend of the 
value of  FCR criterion as a lost function. Assuming the m-th step of identification process the model has 
m- rules. 

To determine the fitting criterion the simple Kondo criterion was chosen in form 
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The search is stopped and identification process is finished, if the minimal values of FCR 
criterion in (m-1)-th  and m-th steps are in relation 

 

   1 mFCRmFCR         

  
and then model in (m-1)-th step is described as optimal one. 
 

5.2 Premise Parameters Identification 

The estimation of parameters of the premise is performed in such a way, so that the error of the 
estimate of dependent variable decreases in the process of identification. For observed values (x1

0
 , x2

0 , 
... , xn

0 , yo ) the error E of estimate y* is formulated using formula 
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The identification algorithms determines new parameters of fuzzy sets Arj  under condition  
 

E   min. 
 
Identification of the consequent is realized for variables of the premise given in previous phase 

of identification of the premise. 
 

5.3 Consequent Parameters Identification 

Given vector of inputs xij
0

 = (1, xi1
0 , xi2

0 , ... , xin
o) we can calculate partial values of outputs 
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The regression coefficients kj(wr) are now the non-linear coefficients, dependent on value of the 
weight coefficient wr . The regression task is solved using linear programming method for the vector 
of transformed input variables  zi  with elements  zij where 
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Then, we solve the linear programming task with objective function minJ and constraints 
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5.4 Consequent Structure Identification 

The procedure of structure identification of consequents is very simple. If the value of regression 
coefficient kj is lower than determined limit Kmin (where Kmin is very small number approaching zero), i.e. 

 

min
K

j
k          

 
then the variable xj  is implicite eliminated from the consequent. 

 
 

6 Computer program modul enfis 

To realize the method FERM the special computer program modul called ENFIS (Extended Non-
Linear Fuzzy Identifical System) was developed and created.  

The block CFG determines all the constants and parameters of future computing. The input 
blocks PD1 - PD3 perform the data acquisition and data preliminary processing. The blocks PP1 - PP4 
are used for heuristic searching of sub-models premise structure and for determination of the sub-
models rules. The blocks IM1 - IM6 realize the proper procedures of structure and parameters 
identification and evaluate the fitting and stop criterions. The output block OUT serves for presentation 
of the results in suitable output form. 
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7 Numerical examples 

Langari´s Synthetical Model and ENFIS Efficiency Comparison 
In this example the fuzzy regression modelling using expanded system ENFIS is applied to the 

empirical data to illustrate its power in comparison with other systems. The set of 24 data points was 
used to identify fuzzy model.  

Using the input/output data points the following model and results were obtained using the 
procedure ENFIS [the value of fuzziness (> 0) of partial consequent coefficients are written in the 
brackets]: 

 
R1:  IF (x1 is SMALL)  & (x2 is SMALL)  THEN   y1 = 0.24x1 + 0.51x2 + 0.01(0.01)    
R2:  IF (x1 is LARGE)  & (x2 is SMALL)  THEN   y2 = 0.35x1 + 0.53x2 + 0.00(0,18)   
R3:  IF (x1 is SMALL)  & (x2 is LARGE)  THEN   y3 = 0.62x1 +  0.40x2 + 0.00(0.12)   
R4:  IF (x1 is LARGE)  & (x2 is LARGE)  THEN   y4 = 0.47x1 + 0.51x2  + 0.00(0.04) 
 
J = 0.36,    FCR = 10.35% 

 
The premise parameters of two linguistic terms (SMALL, LARGE - both of trapezoidal shapes) of 

two linguistic premise variables (x1, x2) were identified as follows: 
 
SMALL  {0.00,  0.00,  0.30,  0.70 } 
LARGE  {0.30,  0.70,  1.00,  1.00 }  
 

The fitness of desirable values y0 and predicted values y* of input variable y is descripted using 
the graph in Fig. 2.  

 
Fig. 1 Measured values y0 and predicted values y* of input variable y 

 
Now the fitting criterion was composed as sum of square errors. 
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To judge the obtained results the comparison with some other methods is presented and the 

prediction power of fuzzy model ENFIS is proved [13]. 
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METHOD FITTING CRITERION 

Zimermann (1980) 0.080 

Dyckhoff (1984) 0.066 

Krishnapuram (1992) 0.064 

FERM – ENFIS 0.049 

Langari (1995) - Hybrid Learning 
Algorithm 

0.044 

Langari (1995) - Supervised Learning 
Algorithm 

0.043 

Tab. 1 Quality of selected modelling methods comparison [13] 

 
It can be seen that system ENFIS compare favourably with these existing algorithms. 

 

Fuzzy Regression Coeficients Identification 

The final part of extended TS model identification procedure we can see in Tab.1. The search of 
the best structure is presented through last four submodels. The best of them is this one with 8 rules 
and lost function value equal 1,05%.  The vagueness of regression coefficients is expressed trough the 
half basics of their triangular shape membership functions  (in brackets). 

 

 
 

Tab.1  Final results of extended TS model identification using procedure ENFIS 
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8 CONCLUSION 

The proposed fuzzy non-linear regression model FERM involving the fuzzy linear regression 
equations is interesting through the  vague phenomenon of the system structure/parameters which is 
better reflected. The realization of the computer program ENFIS which solves the tasks of construction 
FERM and its parameters identification enables application of the proposed method in modelling of the 
real complex systems.  
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Fig.2 Flow diagram of programme system ENF 


